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An examination is made of the problem of determining the steady
temperature field in a medium with a cylindrical inclusion, separated
from the medium by a thin intermediate layer, for an assigned steady
temgperature at infinity. The problem is reduced to solution of a sys-
tem of singular integro-differential equations, which are also valid
for a solid containing an inclusion in the form of a thin non-closed
cylindrical shell.

Let there be an infinite homogeneous solid con-
taining a cylindrical inclusion, separated from the
solid by a thin intermediate layer of constant thick-
ness. We shall make the z axis of a rectangular sys-
tem of coordinates coincide with the axis of the inclu-
sion.

We shall examine the problem of determining the
steady temperature field T(x,y) in this kind of system,
under the assumption that at a large enough distance
from the inclusion the temperature distribution is de-
scribed by a given harmonic function t(x,y).

To simplify the problem we shall replace the in-
termediate by some physical surface with thermophys-
ical properties as shown [1,2]. The intersection of
this cylindrical surface with the plane xQOy gives a
certain contour L (see figure), on which the following
conditions must be satisfied [1, 2]:
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In what follows we shall regard the contour L as a
Lyapunov line.

The desired temperature T(x,y) may of course be
represented in the form

T(x’ !/) = t(xyy) + ta (x’ y)v (2)

where t is the temperature due to the perturbation of
the given temperature field due to the presence of the
inclusion in the solid. We shall assume that at infinity
(x,y) — 0.

To determine the harmonic inside and outside con-
tour L of the function t(x,y), which will vanish at in-
finity, we obtain, because of relation (1), the follow-
ing boundary conditions on L:
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We shall seek the function t(x,y) in the form of a
sum of logarithmic potentials of a simple layer and a
double layer with the respective densities y(s) and p(s):

f(x_, y)=ulx, y) +v(x, y) (5)
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It is well known [3] that the potential of the double
layer tends to zero at infinity; the potential of the sim-
ple layer has a logarithmic singularity at infinity, and
will vanish there only if the entire "mass" of the sim-
ple layer is equal to zero:
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The limiting values of the potentials on contour L have
the form {3]
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To determine the normal and the second tangential
derivatives of the potentials, it is convenient to use
an integral of the Cauchy type, which is closely con-
nected with the potentials of the simple and double
layers.

Let

0@ = 5 (L0 (9)
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be an integral of the Cauchy type, whose density u(¢) is
the actual function satisfying the Holder condition. As
is known [4], the real part of the integral is the poten-
tial of the double layer with density u(s), while the
imaginary part is the potential of the simple layer with
density p(s) = —du/ds.

It is evident that the derivatives of potentials (6)
will also be equal to the real and imaginary parts of
the corresponding derivative of the integral (9) of the



190

Cauchy type. Then we must replace u(s) by vy(s) under
the integrals of the real part, and put u'(s) = —p(s)
under the integrals of the imaginary part.

N

Schematic of the problem,

The limiting values of the normal and tangential de-
rivatives of the Cauchy type integral are expressed in
terms of the limiting values of its derivative with re~
spect to the complex coordinate. Then, if p(M) (g) sat-
isfies the Holder condition, the limiting values of the
m-~th order derivative of the Cauchy type integral are
determined according to the formula [5]:
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We shall find the normal derivatives of the poten-
tials (6).
We have
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Substituting the expression [$'(Z)]* from (10) into
(11), and taking into account that
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Separating the real and imaginary parts, with ap-
propriate substitution of the densities, we find
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We should understand the integral in the first part of
(13) in the sense of the principal value according to
Cauchy.

The second derivative of the Cauchy type integral
with respect to sy is expressed in terms of derivatives
with respect to the complex coordinate of the contour
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%o according to the formula
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From (10) we shall find the limiting values $'(%o)
and ®"(Zy), expressed as functions ot.' the arc of the
contour. Bearing in mind that dZ = ei®ds, we have
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Substituting (15) into (14), and taking into account
that ® =4 + o, we obtain
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From (16), following separation of the real and
imaginary parts, we obtain
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We interpret the last two integrals in (17), and the
first integral in (18), in the sense of the principal value
according to Cauchy.

Substituting (8), (13), (17) and (18), taking account
of (5), into the boundary conditions (3), we obtain the
following system of singular integro-differential equa-
tions to determine y(s) and p(s):
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Equations (19) weic obtained for closed contours.
They are true also for open contours, with the pro-
viso that at the ends of the contour, y(s), y'(s) and
p(s) are equal to zero. This condition indicates the
finiteness of the potentials and of their derivatives at
the ends.

Having determined y(s) and p(s) from the system of
Eqgs. (19), we may find, from formulas (6) and (5), the
function t(x, y) which describes the perturbation of the
temperature field in the vicinity of the inclusion.

We note that it is convenient to determine the po-
tentials u(x,y) and v(x,y), not from (6), but with the
help of the Cauchy type integral (9), making use of the
fact that, as has already been noted above, the real
part of ®(z) is the potential of the double layer with
density y(s) = u(s), while the imaginary part is the po-
tential of the simple layer v(x,y) with density p(s) =
=—u'(s).

We shall examine some special cases.

If there is perfect thermal contact between the
solid and the inclusion (A9 = 0, h = =), from the se~
cond equation of (19) we obtain that y(s) = 0, while
from the first equation—the Fredholm integral equa-
tion of the second kind
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In the case when L is a section of the real axis x <
=< | (we have a crack in the xOy plane, between the
edges of which there is imperfect thermal contact),
then, using Ay =23 = A, K¢ =K =0, and taking into
account that

sinay/r = sina/r = 0, cosay/r = cosa/r = 1/(f — x),

we find
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If the thermal conductivity of the crack is Ay = 0,
then p(x) = 0, and to determine y(x) we obtain the
Prandtl integro-differential equation
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There is at present no exact solution of this equa-
tion. It may be reduced to a regular Fredholm equa-
tion. For numerical calculations, however, itis
convenient to use one of the approximate methods, for
example, the method of trigonometrical expansions
[6], or the method of Multhopp [7,8].

Finally, we shall find the temperature field in a
plane with a circular inclusion of radius R, when the
uniform temperature field,

to=a-+bp cos ¢, (23}

is given at infinity, p and ¢ being polar coordinates

(the origin of the polar system of coordinates has been

chosen to be at the center of the circle, while the polar

axis is directed parallel to the heat flux at infinity).
Putting

, A== . r=2Rsin q)_é%,

in (19), integrating by parts, and taking into account
condition (7) and the continuity of p(¢), v{¥) and y'(¢),
we obtain
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We shall seek a solution of (24) in the form
v(@) = Acosp, p(9)=B cose. (25)

Following evaluation of the integrals, we find
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Denoting the complex coordinate of a point of the
circle by ¢, we may represent y(s) in the complex
form
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Substituting this value of y into (9) in place of pu,
and separating the real part, we obtain

u(p,@):Re—;;—':—=g%cosq> (o< R),
w9 = —Re X — R g @>n.
2z 20
Further, putting
p=—§p(s)ds= — BRsing = -—B—(g_ 52_)
2 r

in (9), and separating the imaginary part, we find

B
v(p,@)=—~1m2—f=32—pcoscp (o <R),
BR? BR?
v(p, p) = —Im 22 = 212 cos@ (o> R).

For the temperature of the inclusion and of the solid,
on the basis of (23), (5), and (2), we obtain, respec-
tively,
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The last example was also examined in reference

[2].

NOTATION

T(x,y) denotes temperature; t,(%,y) is temperature
at infinity; t(x,y) is a function describing the perturba-
tion of the temperature field in the vicinity of the in-
termediate layer; Ay is reduced thermal conductivity
of the layer; h is its thermal conductivity; A;,A; are
thermal conductivities of the inclusion and of the solid;
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s, 5¢ are the length of arc coordinates of points N and
M, of the contour L; ng is the inside normal to L at
the point My; u(x, y), v(x,y) are the logarithmic poten-
tials of the double and simple layers; y(s), p(s) are the
densities of the double and simple layers; u(¢) is the
density of the Cauchy type integral; r is the distance
between the two points; ¢, «g are the angles between
the vector MyN and the positive tangents to L at the
points N and My, respectively; 6 is the angle between
the axis Ox and the vector M—{N; ®, @ are angles be-
tween the axis Ox and the positive tangents at the
points N and My, respectively; K, K; are the curva-
ture of the contour L at the points N and Mgy; a, b are
given constants, determining the temperature at in-
finity. The subscripts plus and minus denote the limit-
ing values of the quantities when approaching the con-
tour L from the side of the inclusion and of the solid,
respectively.
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